Abstract

Review Article

The Gut-Brain Axis: Exploring the Bidirectional Communication Between the Gut Microbiome and the Brain

Bhoomi Aggarwal*

Published: 27 September, 2024 | Volume 8 - Issue 1 | Pages: 047-057

The gut microbiome is a complex network of interactions between the brain and the gastrointestinal tract, playing a pivotal role in human health and disease. The microbiota-gut-brain axis (GBA) serves as a crucial connector between the brain’s emotional and cognitive centers and the peripheral intestinal functions, emphasizing the profound impact of gut health on overall well-being. The GBA is characterized by a symbiotic relationship between the gut and the brain, regulating the expression of inflammatory cytokines and neurotransmitters. The MGBA is also regulated by microbial metabolites, such as short-chain fatty acids (SCFAs) and fatty acid derivatives. This paper focuses on the importance of the GBA in regulating gut health and the potential for targeted therapeutic interventions to improve health outcomes. The implications of this research are vast, suggesting that future strategies aimed at modulating the gut biome may offer promising avenues for the development of personalized medicine and dietary interventions.

Read Full Article HTML DOI: 10.29328/journal.jfsr.1001064 Cite this Article Read Full Article PDF

Keywords:

Gut-Brain Axis, Gut Microbiome, Enteric Nervous System, Gut Hormones, Neurological Disorder

References

  1. Ullah H, Arbab S, Tian Y, Liu C, Chen Y, Li Q, et al. The gut microbiota–brain axis in neurological disorder. Front Neurosci. 2023;17:1225875. https://doi.org/10.3389%2Ffnins.2023.1225875
  2. The Gut-Brain axis. Available from: https://www.sciencedirect.com/book/9780323999717/the-gut-brain-axis
  3. Carabotti M, Scirocco A, Maselli M, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. PubMed. 2015;28(2):203–209. Available from: https://pubmed.ncbi.nlm.nih.gov/25830558
  4. Loh JS, Mak WQ, Tan L, Ng CX, Chan H, Yeow SH, et al. Microbiota–gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9(1). Available from: https://doi.org/10.1038/s41392-024-01743-1
  5. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. 2016;24:308-319. Available from: https://doi.org/10.1007/s12028-015-0203-0
  6. Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis. 2020;136:104714. Available from: https://doi.org/10.1016/j.nbd.2019.104714
  7. Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, et al. Diet and the microbiota-gut-brain axis: sowing the seeds of good mental health. Adv Nutr. 2021;12:1239-1285. Available from: https://doi.org/10.1093%2Fadvances%2Fnmaa181
  8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–2. Available from: https://doi.org/10.1007/s00394-017-1445-8
  9. Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4). Available from: https://doi.org/10.1001/jamanetworkopen.2020.2895
  10. Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The contribution of gut microbiota-brain axis in the development of brain disorders. Front Neurosci. 2021;15:616883. Available from: https://doi.org/10.3389%2Ffnins.2021.616883
  11. Suganya K, Koo B. Gut-Brain Axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial immune pathways to improve brain functions. Int J Mol Sci. 2020;21(20):7551. Available from: https://doi.org/10.3390%2Fijms21207551
  12. Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrettwilt GA, Rabaglia ME, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell. 2016;64:982. Available from: https://doi.org/10.1016/j.molcel.2016.10.025
  13. Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, et al. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma. 2010;68:1059-1064. Available from: https://doi.org/10.1097/ta.0b013e3181d87373
  14. Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis. 2020;134:104621. Available from: https://doi.org/10.1016/j.nbd.2019.104621
  15. Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: A common path to neurodegenerative diseases? Acta Neuropathol. 2018;136:345–361. Available from: https://doi.org/10.1007/s00401-018-1856-5
  16. Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-gut-bone marrow axis. Circ Res. 2016;118(8):1327–1336. Available from: https://doi.org/10.1161%2FCIRCRESAHA.116.307709
  17. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569. Available from: https://doi.org/10.1126/science.1241165
  18. Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. Available from: https://doi.org/10.1016/j.ebiom.2022.103908
  19. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry. 2016;21:738–748. Available from: https://doi.org/10.1038/mp.2016.50
  20. Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH. Current understanding of gut microbiota in mood disorders: an update of human studies. Front Genet. 2019;10:1–12. Available from: https://doi.org/10.3389%2Ffgene.2019.00098
  21. Mayer EA. Gut feelings: The emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12:453–466. Available from: https://doi.org/10.1038/nrn3071
  22. Bhattarai Y. Microbiota-gut-brain axis: interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil. 2018;30. Available from: https://doi.org/10.1111/nmo.13366
  23. Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, et al. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate, and how to put knowledge into practice. Cell Mol Life Sci. 2022;79(2). Available from: https://doi.org/10.1007/s00018-021-04060-w
  24. Appleton J. The gut-brain axis: influence of microbiota on mood and mental health. Integr Med (Encinitas, Calif). 2018;17(4):28–32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/
  25. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl Res J Lab Clin Med. 2017;179:223–244. Available from: https://doi.org/10.1016/j.trsl.2016.10.002
  26. Palacios-García I, Parada FJ. Measuring the brain-gut axis in psychological sciences: a necessary challenge. Front Integr Neurosci. 2019;13. Available from: https://doi.org/10.3389%2Ffnint.2019.00073
  27. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013. Available from: https://doi.org/10.1152/physrev.00018.2018
  28. Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–496. Available from: https://doi.org/10.1093/nutrit/nuy009
  29. Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13–23. Available from: https://doi.org/10.1016/j.neubiorev.2019.03.023
  30. Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17(2):322–332. Available from: https://doi.org/10.1016/j.cgh.2018.10.002
  31. Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018;57(1):25–49. Available from: https://doi.org/10.1007/s00394-017-1546-4
  32. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42. Available from: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0303-2
  33. Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17(2):322–332. Available from: https://doi.org/10.1016/j.cgh.2018.10.002
  34. Bui E, Fava M. From depression to anxiety, and back. Acta Psychiatr Neurol Scand. 2017;136:341–342. Available from: https://doi.org/10.1111/acps.12801
  35. Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13:2099. Available from: https://doi.org/10.3390%2Fnu13062099
  36. Jin L, Shi X, Yang J, et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell. 2021;12(5):346–359. Available from: https://doi.org/10.1007%2Fs13238-020-00785-9
  37. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome microglia connections via the gut–brain axis. J Exp Med. 2019;216:41–59. Available from: https://doi.org/10.1084%2Fjem.20180794
  38. Bhattarai Y, Si J, Pu M, Ross OA, McLean PJ, Till L, et al. Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson’s disease. Gut Microbes. 2021;13:1866974. Available from: https://doi.org/10.1080%2F19490976.2020.1866974
  39. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2020.00025/full
  40. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–257. Available from: https://doi.org/10.1016/j.jad.2016.05.038
  41. Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20:1482. Available from: https://doi.org/10.3390/ijms20061482
  42. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256. Available from: https://doi.org/10.3389%2Ffnagi.2016.00256
  43. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. Available from: https://doi.org/10.1038/nature11319
  44. Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD, et al. The expression of GLP1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem. 2005;92:798–806. Available from: https://doi.org/10.1111/j.1471-4159.2004.02914.x
  45. Askarova S, Umbayev B, Masoud AR, Kaiyrlykyzy A, Safarova Y, Tsoy A, et al. The links between the gut microbiome, aging, modern lifestyle, and Alzheimer's disease. Front Cell Infect Microbiol. 2020;10:104. Available from: https://doi.org/10.3389/fcimb.2020.00104
  46. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affects central levels of brain-derived neurotrophic factors and behavior in mice. Gastroenterology. 2011;141, 599–609.e3. Available from: https://doi.org/10.1053/j.gastro.2011.04.052
  47. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. J Gastrointestinal Motility. 2011;23:1132–1139. Available from: https://doi.org/10.1111/j.1365-2982.2011.01796.x
  48. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS. 2011;108:16050–16055. Available from: https://doi.org/10.1073/pnas.1102999108
  49. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139. Available from: https://doi.org/10.1053/j.gastro.2010.06.063
  50. Braniste V, al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158. Available from: https://doi.org/10.1126%2Fscitranslmed.3009759
  51. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582:89–94. Available from: https://doi.org/10.1038/s41586-020-2288-7
  52. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatr. 2013;18:666–673. Available from: https://doi.org/10.1038/mp.2012.77
  53. Wang X, Chen Z, Geng B, Cai J. The bidirectional signal communication of microbiota-gut-brain axis in hypertension. Int J Hypertens. 2021;2021:1–9. Available from: https://doi.org/10.1155%2F2021%2F8174789
  54. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013. Available from: https://doi.org/10.1152/physrev.00018.2018
  55. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–478. Available from: https://doi.org/10.1038/s41575-019-0157-3
  56. De la Fuente-Nunez C, Meneguetti BT, Franco OL, Lu TK. Neuromicrobiology: how microbes influence the brain. ACS Chem Neurosci. 2018;9:141–150. Available from: https://doi.org/10.1021/acschemneuro.7b00373
  57. Sharma RK, Yang T, Oliveira AC, et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res. 2019;124(5):727–736. Available from: https://doi.org/10.1161/circresaha.118.313882
  58. De Palma G, Collins SM, Bercik P, Verdu EF. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain, or both? J Physiol (London). 2014;592:2989–2997. Available from: https://doi.org/10.1113/jphysiol.2014.273995
  59. Zhang X, Jiang X. Effects of enteral nutrition on the barrier function of the intestinal mucosa and dopamine receptor expression in rats with traumatic brain injury. JPEN J Parenter Enteral Nutr. 2015;39:114–123. Available from: https://doi.org/10.1177/0148607113501881
  60. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. CTI. 2016;5. Available from: https://doi.org/10.1038%2Fcti.2016.17
  61. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 2012;13:701–712. Available from: https://doi.org/10.1038/nrn3346
  62. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–742. Available from: https://doi.org/10.1038/nrmicro2876
  63. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5. Available from: https://doi.org/10.1080%2F21688370.2017.1373208
  64. Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–194. doi:10.1016/S1474-4422(19)30356-4. Available from: https://doi.org/10.1016/s1474-4422(19)30356-4

Figures:

Similar Articles

Recently Viewed

  • Pattern of Eye Disease in Nenwe Rural Eye Clinic, Nigeria: A Seven Year Review
    Nnenna Maureen Ozioko*, Nkiru Mary Okoloagu, Emmanuel Sunday Onah and Catherine Nnenna Maureen Ozioko*, Nkiru Mary Okoloagu, Emmanuel Sunday Onah, Catherine. Pattern of Eye Disease in Nenwe Rural Eye Clinic, Nigeria: A Seven Year Review. Int J Clin Exp Ophthalmol. 2024: doi: 10.29328/journal.ijceo.1001056; 8: 004-015
  • Retinopathy of prematurity - Intersibling divergence of risk factors among twins
    Sudeep Navule Siddappa*, Kavitha Chikknayakanahalli Venugopal, Pavana Acharya and Tintu Susan Joy Sudeep Navule Siddappa*,Kavitha Chikknayakanahalli Venugopal,Pavana Acharya ,Tintu Susan Joy . Retinopathy of prematurity - Intersibling divergence of risk factors among twins. Int J Clin Exp Ophthalmol. 2020: doi: 10.29328/journal.ijceo.1001026; 4: 009-011
  • Effectiveness of levocetirizine in treating allergic rhinitis while retaining work efficiency
    Dabholkar Yogesh, Shah Tanush, Rathod Roheet, Paspulate Akhila, Veligandla Krishna Chaitanya, Rathod Rahul, Devesh Kumar Joshi* and Kotak Bhavesh Dabholkar Yogesh, Shah Tanush, Rathod Roheet, Paspulate Akhila, Veligandla Krishna Chaitanya, Rathod Rahul, Devesh Kumar Joshi*, Kotak Bhavesh. Effectiveness of levocetirizine in treating allergic rhinitis while retaining work efficiency. Arch Asthma Allergy Immunol. 2023: doi: 10.29328/journal.aaai.1001031; 7: 005-011
  • Hepatic Pseudolymphoma Mimicking Neoplasia in Primary Biliary Cholangitis: A Case Report
    Jeremy Hassoun, Aurélie Bornand, Alexis Ricoeur, Giulia Magini, Nicolas Goossens and Laurent Spahr* Jeremy Hassoun,Aurélie Bornand,Alexis Ricoeur,Giulia Magini,Nicolas Goossens,Laurent Spahr*. Hepatic Pseudolymphoma Mimicking Neoplasia in Primary Biliary Cholangitis: A Case Report. Arch Case Rep. 2024: doi: 10.29328/journal.acr.1001115; 8: 152-155
  • Other Applications of Amniotic Membranes: Case Series
    Linda Guerrero* Linda Guerrero*. Other Applications of Amniotic Membranes: Case Series. Arch Case Rep. 2024: doi: 10.29328/journal.acr.1001117; 8: 159-162

Read More

Most Viewed

Read More

Help ?