Review Article
The Gut-Brain Axis: Exploring the Bidirectional Communication Between the Gut Microbiome and the Brain
Bhoomi Aggarwal*
Published: 27 September, 2024 | Volume 8 - Issue 1 | Pages: 047-057
The gut microbiome is a complex network of interactions between the brain and the gastrointestinal tract, playing a pivotal role in human health and disease. The microbiota-gut-brain axis (GBA) serves as a crucial connector between the brain’s emotional and cognitive centers and the peripheral intestinal functions, emphasizing the profound impact of gut health on overall well-being. The GBA is characterized by a symbiotic relationship between the gut and the brain, regulating the expression of inflammatory cytokines and neurotransmitters. The MGBA is also regulated by microbial metabolites, such as short-chain fatty acids (SCFAs) and fatty acid derivatives. This paper focuses on the importance of the GBA in regulating gut health and the potential for targeted therapeutic interventions to improve health outcomes. The implications of this research are vast, suggesting that future strategies aimed at modulating the gut biome may offer promising avenues for the development of personalized medicine and dietary interventions.
Read Full Article HTML
DOI: 10.29328/journal.jfsr.1001064
Cite this Article
Read Full Article PDF
Keywords:
Gut-Brain Axis, Gut Microbiome, Enteric Nervous System, Gut Hormones, Neurological Disorder
References
- Ullah H, Arbab S, Tian Y, Liu C, Chen Y, Li Q, et al. The gut microbiota–brain axis in neurological disorder. Front Neurosci. 2023;17:1225875. https://doi.org/10.3389%2Ffnins.2023.1225875
- The Gut-Brain axis. Available from: https://www.sciencedirect.com/book/9780323999717/the-gut-brain-axis
- Carabotti M, Scirocco A, Maselli M, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. PubMed. 2015;28(2):203–209. Available from: https://pubmed.ncbi.nlm.nih.gov/25830558
- Loh JS, Mak WQ, Tan L, Ng CX, Chan H, Yeow SH, et al. Microbiota–gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9(1). Available from: https://doi.org/10.1038/s41392-024-01743-1
- Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. 2016;24:308-319. Available from: https://doi.org/10.1007/s12028-015-0203-0
- Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis. 2020;136:104714. Available from: https://doi.org/10.1016/j.nbd.2019.104714
- Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, et al. Diet and the microbiota-gut-brain axis: sowing the seeds of good mental health. Adv Nutr. 2021;12:1239-1285. Available from: https://doi.org/10.1093%2Fadvances%2Fnmaa181
- Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–2. Available from: https://doi.org/10.1007/s00394-017-1445-8
- Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4). Available from: https://doi.org/10.1001/jamanetworkopen.2020.2895
- Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The contribution of gut microbiota-brain axis in the development of brain disorders. Front Neurosci. 2021;15:616883. Available from: https://doi.org/10.3389%2Ffnins.2021.616883
- Suganya K, Koo B. Gut-Brain Axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial immune pathways to improve brain functions. Int J Mol Sci. 2020;21(20):7551. Available from: https://doi.org/10.3390%2Fijms21207551
- Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrettwilt GA, Rabaglia ME, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell. 2016;64:982. Available from: https://doi.org/10.1016/j.molcel.2016.10.025
- Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, et al. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma. 2010;68:1059-1064. Available from: https://doi.org/10.1097/ta.0b013e3181d87373
- Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis. 2020;134:104621. Available from: https://doi.org/10.1016/j.nbd.2019.104621
- Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: A common path to neurodegenerative diseases? Acta Neuropathol. 2018;136:345–361. Available from: https://doi.org/10.1007/s00401-018-1856-5
- Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-gut-bone marrow axis. Circ Res. 2016;118(8):1327–1336. Available from: https://doi.org/10.1161%2FCIRCRESAHA.116.307709
- Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569. Available from: https://doi.org/10.1126/science.1241165
- Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. Available from: https://doi.org/10.1016/j.ebiom.2022.103908
- Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry. 2016;21:738–748. Available from: https://doi.org/10.1038/mp.2016.50
- Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH. Current understanding of gut microbiota in mood disorders: an update of human studies. Front Genet. 2019;10:1–12. Available from: https://doi.org/10.3389%2Ffgene.2019.00098
- Mayer EA. Gut feelings: The emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12:453–466. Available from: https://doi.org/10.1038/nrn3071
- Bhattarai Y. Microbiota-gut-brain axis: interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil. 2018;30. Available from: https://doi.org/10.1111/nmo.13366
- Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, et al. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate, and how to put knowledge into practice. Cell Mol Life Sci. 2022;79(2). Available from: https://doi.org/10.1007/s00018-021-04060-w
- Appleton J. The gut-brain axis: influence of microbiota on mood and mental health. Integr Med (Encinitas, Calif). 2018;17(4):28–32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/
- Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl Res J Lab Clin Med. 2017;179:223–244. Available from: https://doi.org/10.1016/j.trsl.2016.10.002
- Palacios-García I, Parada FJ. Measuring the brain-gut axis in psychological sciences: a necessary challenge. Front Integr Neurosci. 2019;13. Available from: https://doi.org/10.3389%2Ffnint.2019.00073
- Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013. Available from: https://doi.org/10.1152/physrev.00018.2018
- Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–496. Available from: https://doi.org/10.1093/nutrit/nuy009
- Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13–23. Available from: https://doi.org/10.1016/j.neubiorev.2019.03.023
- Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17(2):322–332. Available from: https://doi.org/10.1016/j.cgh.2018.10.002
- Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018;57(1):25–49. Available from: https://doi.org/10.1007/s00394-017-1546-4
- Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42. Available from: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0303-2
- Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17(2):322–332. Available from: https://doi.org/10.1016/j.cgh.2018.10.002
- Bui E, Fava M. From depression to anxiety, and back. Acta Psychiatr Neurol Scand. 2017;136:341–342. Available from: https://doi.org/10.1111/acps.12801
- Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13:2099. Available from: https://doi.org/10.3390%2Fnu13062099
- Jin L, Shi X, Yang J, et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell. 2021;12(5):346–359. Available from: https://doi.org/10.1007%2Fs13238-020-00785-9
- Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome microglia connections via the gut–brain axis. J Exp Med. 2019;216:41–59. Available from: https://doi.org/10.1084%2Fjem.20180794
- Bhattarai Y, Si J, Pu M, Ross OA, McLean PJ, Till L, et al. Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson’s disease. Gut Microbes. 2021;13:1866974. Available from: https://doi.org/10.1080%2F19490976.2020.1866974
- Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2020.00025/full
- Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–257. Available from: https://doi.org/10.1016/j.jad.2016.05.038
- Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20:1482. Available from: https://doi.org/10.3390/ijms20061482
- Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256. Available from: https://doi.org/10.3389%2Ffnagi.2016.00256
- Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. Available from: https://doi.org/10.1038/nature11319
- Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD, et al. The expression of GLP1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem. 2005;92:798–806. Available from: https://doi.org/10.1111/j.1471-4159.2004.02914.x
- Askarova S, Umbayev B, Masoud AR, Kaiyrlykyzy A, Safarova Y, Tsoy A, et al. The links between the gut microbiome, aging, modern lifestyle, and Alzheimer's disease. Front Cell Infect Microbiol. 2020;10:104. Available from: https://doi.org/10.3389/fcimb.2020.00104
- Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affects central levels of brain-derived neurotrophic factors and behavior in mice. Gastroenterology. 2011;141, 599–609.e3. Available from: https://doi.org/10.1053/j.gastro.2011.04.052
- Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. J Gastrointestinal Motility. 2011;23:1132–1139. Available from: https://doi.org/10.1111/j.1365-2982.2011.01796.x
- Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS. 2011;108:16050–16055. Available from: https://doi.org/10.1073/pnas.1102999108
- Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139. Available from: https://doi.org/10.1053/j.gastro.2010.06.063
- Braniste V, al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158. Available from: https://doi.org/10.1126%2Fscitranslmed.3009759
- Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582:89–94. Available from: https://doi.org/10.1038/s41586-020-2288-7
- Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatr. 2013;18:666–673. Available from: https://doi.org/10.1038/mp.2012.77
- Wang X, Chen Z, Geng B, Cai J. The bidirectional signal communication of microbiota-gut-brain axis in hypertension. Int J Hypertens. 2021;2021:1–9. Available from: https://doi.org/10.1155%2F2021%2F8174789
- Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013. Available from: https://doi.org/10.1152/physrev.00018.2018
- Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–478. Available from: https://doi.org/10.1038/s41575-019-0157-3
- De la Fuente-Nunez C, Meneguetti BT, Franco OL, Lu TK. Neuromicrobiology: how microbes influence the brain. ACS Chem Neurosci. 2018;9:141–150. Available from: https://doi.org/10.1021/acschemneuro.7b00373
- Sharma RK, Yang T, Oliveira AC, et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res. 2019;124(5):727–736. Available from: https://doi.org/10.1161/circresaha.118.313882
- De Palma G, Collins SM, Bercik P, Verdu EF. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain, or both? J Physiol (London). 2014;592:2989–2997. Available from: https://doi.org/10.1113/jphysiol.2014.273995
- Zhang X, Jiang X. Effects of enteral nutrition on the barrier function of the intestinal mucosa and dopamine receptor expression in rats with traumatic brain injury. JPEN J Parenter Enteral Nutr. 2015;39:114–123. Available from: https://doi.org/10.1177/0148607113501881
- Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. CTI. 2016;5. Available from: https://doi.org/10.1038%2Fcti.2016.17
- Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 2012;13:701–712. Available from: https://doi.org/10.1038/nrn3346
- Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–742. Available from: https://doi.org/10.1038/nrmicro2876
- Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5. Available from: https://doi.org/10.1080%2F21688370.2017.1373208
- Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–194. doi:10.1016/S1474-4422(19)30356-4. Available from: https://doi.org/10.1016/s1474-4422(19)30356-4
Figures: